Progress with Licence Termination (Delicensing) of the UKAEA, Harwell Site, UK

Paul Atyeo

Harwell

- Near Didcot, Oxfordshire
- Former RAF airfield
- Original licensed site 113 hectares
- Part of the Harwell Science and Innovation Campus
- Site of early nuclear research laboratories and reactors
- Research reactors GLEEP, BEP0, Dido and Pluto

- End state for Harwell is for a fully delicensed site
- For most areas of the site delicensing logically follows on after decommissioning of the facilities
- Phased approach to delicensing to gain experience and competence
 - ETSU Area, 5 hectares, delicensed 1992
 - Pilot Area, 7 hectares, delicensed 2006
 - North Gate Area, 5 hectares, case submitted
 - Eastern Area Facilities, 5 hectares, case submitted

Delicensing Process - What's involved?

- Historical survey of records and maps/drawings
- Radiological and chemical surveys of the land
- Building/drains surveys
- Investigation/remediation of anomalies
- Prepare Delicensing Case
- Formal Submission to Nuclear Installations Inspectorate (NII)
- NII verification surveys
- Clarifications/discussions
- NII Approval
- Mark the new boundary
- Issue of Licence Variation

Delicensing Criteria

HSE Issued Delicensing Policy issued in May 2005

- Additional risk of death to the individual meets a risk criteria of 10^{-6} /y for any foreseeable use (equivalent to 10-20 μ Sv/y)
- No radioactive waste left on site

IAEA Guideline Values

www-pub.iaea.org/MTCD/publications/PDF/Pub1202_web.pdf

• Gives Bq/g clearance levels for a list of radionuclides

Radionuclide	Clearance level, Bq/g
Cs-137	0.1
Co-60	0.1
Pu-239	0.1
Pu-241	10
Am-241	0.1
H-3	100
Sr-90	1

Pilot Area Surveys

- Building surveys
 - Alpha, beta and gamma surveys of all buildin including roofs
 - Intrusive investigations of radiation anomalies
- Land surveys
 - Gamma survey of all open land
 - Alpha and beta surveys of selected areas
 - Dose rate survey
 - Intrusive surveys on a 23 m grid 3 m depth.
 - 500 samples for analysis
- <u>Drains....</u>

EAF

- 5.05 hectares •
- Four major buildings existed •
 - Hangar 7
 - Hangar 8
 - B477 (Tandem Generator)

 - B3
- 33 buildings existed •
- 9 buildings with history of handling radioactive material •
- All buildings demolished • 2005
- Underground concrete structures remain

Research Sites Restoration Ltd iii=

	Gamma	H-3	Fe-55	Total	
	Bq/g				
		West Wal			
Average	0.06	0.3	0.1	0.35	
Maximum	0.48	3.7	0.16	4.34	
		Mezzanine F	loor		
Average	0.12	0.6	0.02	0.74	
Maximum	0.77	4.1	0.16	5.03	

Scenario Estin	mated Dose (Sv/y)
Site development - Construction worker	7.9 10 ⁻¹⁵
Site use - office worker	2.7 10 ⁻¹⁵
Site use - car park user	8.9 10 ⁻¹⁷
Site use – paved area	7.2 10 ⁻¹⁵
Drinking water consumption	6.2 10 ⁻⁶
Removing and reusing the concrete	
Removal of the concrete – worker	5.0 10 ⁻⁶
Processing of removed concrete - worker	5.1 10 ⁻⁷
Reuse of removed concrete - pavement use	er 1.1 10 ⁻⁷

Key Issue - Records

- A good records management system is essential
- Accurate and reliable records make delicensing easier
- Delicensing may take place years after decommissioning works – can't rely on memories
- Ensure comprehensive Post Decommissioning Reports are produced
- Involve delicensing team in planning decommissioning and demolition planning

- Providing confidence is as important as the numbers
- Demonstrating negatives is often necessary ie a section of drain isn't there any more
- Attention to detail
- Build delicensing requirements into decommissioning and land remediation works
- Keep good decommissioning/remediation records
- Work with the NII as far as possible
- It takes time to delicense!

Research Sites Restoration Ltd