

Autonomous and Intelligent Systems Partnership

Presented by Dr. Jeffrey A. Kuo

Autonomous and Intelligent Systems Partnership

CONTENTS

- Introduction to NNL
- NNL's remote nuclear deployment capability
- Tele-operation
- Autonomy
- Autonomous and Intelligent Systems Partnership (AISP)

NNL – Facts & Figures

• History

- NNL was the R&D department of BNFL (British Nuclear Fuels Ltd)
- Operated UK's nuclear fuel cycle

• Size

- Around 780 staff
- Over 60% have science or engineering degrees, Masters and PhDs
- Annual turnover of approximately £80M

Key customers

- Sellafield Ltd, NDA, Magnox, Westinghouse, EDF Energy, MoD, UK Government, Regulators
- Commercial business
 - Operate as a commercial business
 - No direct funding or grants from UK government

NNL R&D nuclear programmes

- NATIONAL NUCLEAR
- Fuel and radioisotope technology nuclear physics, reactor design, performance, new nuclear build
- Waste vitrification, immobilisation, behaviour, chemical processes, characterisation
- Legacy and future decommissioning robotics, remote handling, characterisation, decontamination
- Support operations of existing reactors and fuel cycle facilities e.g. fuel fabrication and reprocessing
- Asset care impact, structural and thermo fluids modelling, robotics and remote handling
- Geological disposal, space propulsion systems

Where are our unique facilities?

- Central Laboratory, Sellafield radioactive laboratories and a rig hall for Pu, U, and α
- Windscale radioactive laboratories for nuclear fuel, examination and testing
- Preston radioactive facility for fuel manufacture and testing
- Risley, Stonehouse and Harwell

 office based, simulation and modelling
- Workington non-radiological facility for mechanical testing

NNL Remote Engineering

- Introduction to NNL's remote operations experience
 - Design and deployment of teleoperable systems.
 - Manipulator tooling development.
 - Remote intervention and repair.
 - Remote plant inspection and condition monitoring.
 - Sampling and characterisation.
 - Windscale Laboratory PIE caves.

NNL Remote Engineering

Tele-operation

Tele-operation - manual control of a robot by an operator

Tele-operation – can be difficult

- No visible line of sight
- Congested and hazardous environment
- Non-linear motion
- Response time
- Repeatability performance

shielding

Autonomous Systems

What is Autonomy?

'A system that can make decisions with some or no human intervention'

How are autonomous decisions made?

NATIONAL NUCLE

LABORATO

- Using complex mathematical formulations
- Neural networks
- Fuzzy logic
- Genetic and biologically inspired algorithms

Autonomous Systems

Why do we need autonomy?

- Used for Dull, Dirty, Dangerous and Dark applications
- Remotely deploy complex hardware that present tele-operational challenges e.g. a multi-jointed robot in a highly congested nuclear cave is deployed to cut a pipe
- Such deployments are difficult for human operators spatial awareness, positional control, avoid obstacles, avoid hazards
- Nuclear Decommissioning Authority (NDA) stated that decommissioning must be cheaper, faster and more reliable

Autonomous and Intelligent Systems Partnership (AISP)

AISP History

2010	Discussions BAE Systems and EPSRC
2010 / 2011	Formation of industrial partnerships
June 2011	Preparation of industrial scenarios
July 2011	EPSRC issued call with £6 million
August 2011	Call closes - 73 proposal submitted
August / December 2011	Proposals assessed
December 2011	EPSRC panel review
January 2012	8 projects funded with £8.65 million
February 2012	7 projects funded with £5.5 million
July 2012	Business agreements in place
July 2012	Launch at Schlumberger Cambridge
December 2012	Individual project starts

8 Proposals Co-Funded £8.65 million

University of Liverpool	Reconfigurable Autonomy
University of Cambridge	Autonomous behaviour and learning in an uncertain world
King's College London	Sustained Autonomy through Coupled Plan-based Control and World Modelling with Uncertainty
University of Huddersfield	Machine Learning and Adaptation of Domain Models to Support Real-Time Planning in Autonomous Systems
Loughborough University	Towards More Autonomy for Unmanned Vehicles: Situational Awareness and Decision Making under Uncertainty
University of Bath	Human-Autonomous Systems Collective Capability (HASCC)
University of Oxford	New Foundational Structures for Engineering Verified multi- UAVs
Cranfield University	AUTONOM: Integrated through-life support for high-value systems

8 Proposals Co-Funded £8.65 million

UNIVERSITY OF LIVERPOOL	RECONFIGURABLE AUTONOMY
University of Cambridge	Autonomous behaviour and learning in an uncertain world
King's College London	Sustained Autonomy through Coupled Plan-based Control and World Modelling with Uncertainty
University of Huddersfield	Machine Learning and Adaptation of Domain Models to Support Real-Time Planning in Autonomous Systems
Loughborough University	Towards More Autonomy for Unmanned Vehicles: Situational Awareness and Decision Making under Uncertainty
University of Bath	Human-Autonomous Systems Collective Capability (HASCC)
University of Oxford	New Foundational Structures for Engineering Verified multi- UAVs
Cranfield University	AUTONOM: Integrated through-life support for high-value systems

AISP Reconfigurable Autonomy

- Academic Partners:
 - University of Liverpool
 - Centre for Autonomous Systems Technology
 - Logic and Computation Group
 - University of Sheffield
 - Automatic Control and Systems Engineering Department
 - University of Surrey Space Centre
 - AI Department and Autonomy Group

- Industrial Lead Partners:
 - National Nuclear Laboratory Ltd. and Sellafield Ltd.

The Reconfigurable Autonomy Project aims to deliver:

- An open-source rational agent architecture that controls autonomous decision-making
- An architecture that is re-usable and generic, and can be reconfigured for many different autonomous platforms
- A verifiable core that is dynamically reconfigurable for mission goals, capabilities and control sub-systems
- Hardware can be exchanged / removed / added at run time

NNL's Simulator and AISP's Reconfigurable Autonomy

Why simulate autonomy?

- Autonomy is presently unacceptable within the nuclear industry
- Demonstrate task execution without damaging plant, equipment and people
- Demonstrate reliability and repeatability
- Test mathematical formulations and algorithms

Simulator Features •Controlled by joystick

- •Operator training
- •Design phase evaluate reach, dexterity, human factors, ergonomics
- •Mission and task feasibility

•Controlled as a slave for AISP, research

Autonomous and Intelligent Systems Partnership

Thank you for your attention!

Questions?