

Long Term Trends in Groundwater Quality and Groundwater Sampling Techniques

Samuel Wood, Principal Consultant, SKM Enviros Kayleigh Smith, Field Sales Manager (North), Waterra In-Situ

Presentation Outline

- Time dependent variability.
- Time independent variability.
- Importance of understanding data variability.
- Available options for groundwater sampling.
- Which sampling method do I choose?
- Selected measures to help reduce variability arising from groundwater sampling.

Time Dependent Variability

 Primary goal of Long Term Monitoring is to identify long term temporal ("time dependent") trends in contaminant concentrations.

Time Dependent Variability

- Long term changes can be a function of:
 - reduction in average long term source strength;
 - changes in the attenuation capacity of the aquifer (dilution, adsorption and biodegradation);
 - introduction of new sources of contamination (e.g. buried drum wastes in landfill sites or a new leak); and
 - long term change in hydrogeological conditions groundwater recharge patterns and groundwater levels.
- Sometimes but not always this long term trend is masked by "time independent data".

Time Independent Variability

 Monitoring records often have considerable "noise", "random variability", "scatter" or "time independent" variability. Sometimes this is minor or moderate:

Time Independent Variability

• Sometimes this is large and makes data interpretation very difficult or impossible:

Time Independent Variability

Waterra In-Situ®

Time independent variability arises from: Monitoring Well, Hydrogeological & Contaminant Characteristics:

- Length of screen;
- Permeability variations;
- Contaminants being monitored (e.g. DNAPLs); **Operator Elements:**
- Sampling methods (e.g. fixed volume v low flow sampling);
- Sample collection (how do you fill up a vial?);
- Preservation/filtering techniques;
- Sample transfer (keeping the samples cool, delivery to the laboratory); and
- Chemical analysis (e.g. bias introduced by laboratories).

Importance of Understanding Data Variability

- Makes it difficult to interpret data;
- May increase costs associated with more intensive monitoring to compensate for variability;
- May increases costs required to evaluate groundwater remediation such as MNA, ISCO etc; and
- Often more difficult to gain Regulator approval......

Waterra In-Situ®

SKM ENVIROS

Some Surprising Findings from a US Study

- One of the few studies looking at variability in groundwater monitoring data sets concluded that for VOC data analysed:
 - monitoring frequencies of more than one event per year serves primarily to characterise time independent variability and not LTM goals;
 - long term concentration trend accounts for only 30 to 40% of monitoring variability (spend less?);
 - aquifer and well specific factors are an important source of monitoring variability; and
 - laboratory bias in the sample data of +/- 20% (and was not identified from field duplicates).

Ref: GWM&R 31, No. 2, Spring 2011, Pages 92 to 101.

Variability in Groundwater Monitoring Data

- A better understanding of variability will help:
 - implement measures to reduce such variability;
 - reduce the amount of monitoring data needed to identify long term trends;
 - support sampling methods for specific well designs or hydrogeological conditions; and ultimately
 - facilitate more efficient LTM programmes.

Sampling Methods

- Water is removed from the screened intake at a very low rate
- Water quality is monitored for stability.
- Bladder and peristaltic pumps.
- High set up cost.
- Can be used for VOCs.
- Short screen wells.

Sampling Methods

- Newest method.
- A discrete sample is taken from a specific location in the column.
- Grab samplers and diffusion samplers.
- Most cost effective way of sampling when you consider time
- Short screens.
- Can be used for VOCs
- Widely used in North America.
- No purge water to dispose of.

Passive Samplers - Hydrasleeve

- Hydrasleeve samplers can be used to take samples from a specific interval/zone in a well.
- Sometimes described as a 'grab sampler'.
- The Hydrasleeve fills up over one and a half times it length.
- No sample mixing occurs due to the specialist valve on the sampler.

- You can freeze the Hydrasleeve to sample below a product layer.
- Multiple samplers can be tethered in order to profile a borehole.
- Hydrasleeve samplers can be used to sample below a product layer.
- The Hydrasleeve is frozen into a block of ice. It thaws in the borehole and then you can take your sample.

Passive Samplers – Equilibrator

- The Equilibrator is a passive diffusion bag style sampler.
- Used for specific VOCs (list available).
- The sampler is filled with deionised water and installed in the borehole.
- Over a period of two weeks the sample will equilibrate.
- Great for low yield boreholes.

- The sample chamber is semi permeable which allows VOCs to diffuse into the sampler until the concentration gradient equilibrates between the sampler and the water column.
- The sample can be dispensed straight into a VOC vial.
- Can be used for surface

Low Flow- The Future

- The most commonly used low flow pumps are bladder pumps and peristaltic pumps.
- Water quality instruments and a flow cell are used to monitor pH, ORP, EC, Temperature and Dissolved Oxygen.
- A series of separate meters or a multi parameter can be used.

- New developments mean there is now low flow water quality equipment available that can be operated using a smartphone via Bluetooth.
- The unique App notifies you once the water quality has stabilised and formats a report which can be e-mailed directly to the office.

Novel Sampling Techniques

- There are a wide range of alternatives to traditional methods.
- Most research on the newer techniques has been completed in the US on short screen wells.
- Passive and Low Flow methods are more cost effective in terms of labour.
- If you know your borehole chemistry it could be possible to use passive and low flow methods in longer screened wells.
- Passive and low flow sampling can provide great data for VOCs due to minimal disturbance during sampling.

SKM ENVIROS

Which Sampling Method do I Choose?

- Ultimately choose methods, taking into account site specific conditions that achieve LTM goals.
- Refer to relevant guidance on groundwater sampling.

Note:

- Relevant guidance includes: LFTGN02 (2003); BS ISO 5667-11 (2009); ASTM D4448-01 (2013) and D6452 (2012); and ITRC overview of Passive Sampling (2006).
- No BS standard for passive sampling techniques (albeit on a site by site basis it has received regulatory acceptance).
- No definitive guidance assessing methods, pollutants, and well design and hydrogeological conditions – factors subject to a PHD Study sponsored by Waterra In-Situ.
- From experience EA preference is for low flow sampling.
- International perspective what happens elsewhere?

Selected measures to help reduce variability arising from groundwater sampling

- Use UK and international guidance where applicable but be wary of BS ISO 5667-11 that suggests that low flow sampling is most suited to well designs with long screen lengths (p18) – this may not be the case.
- Consider characterise inflow and outflow zones e.g. by profiling with passive sampling techniques or in-borehole tracer tests.
- If you do change sampling methods overlap them so differences can be identified.
- Be aware that PDBs are not suitable for all VOCs.
- HydraSleeves use appropriate stabilisation times before sample collection (minimum 30minutes – longer the better).

In Summary:

- Groundwater data variability is an important consideration for long term groundwater monitoring, particularly when you cannot remove the contaminant source and for controlling costs.
- There are readily available sampling methods, that if used appropriately, can be used to minimise data variability.
- By achieving a streamlined and efficient LTM plan with minimal data independent variability, there will be more chance of achieving regulatory approval.

Some useful references on statistics comprise:

- Gibb Robert D. 2009. Statistical Methods for Groundwater Monitoring. Second Edition.
- March 2009. USEPA. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Unified Guidance

Thank you for listening. Any Questions?

