GeoMelt Vitrification Life Cycle Benefits for the Treatment of Toxic and Radioactive Wastes

> Presented at the SafeSpur Forum 18 November 2009, Chorley

Brief History

- IMPACT Services, a radioactive waste management company with 4 locations and 2 licensed processing facilities in the US, acquired GeoMelt from AMEC in March, 2009
- IMPACT will use the GeoMelt technology for fixed-based processing of toxic, hazardous, and radioactive wastes generated by both commercial and government clients
- In the UK, IMPACT has teamed with AMEC to continue proof of process demonstrations at AMEC's Birchwood Facility

GeoMelt®

- Electric melting of contaminated soils and wastes
- Soil normally provides source of glass formers
- In-situ or In-Container Vitrification
- Melt temperatures 1300-2000 deg. C
- Volume reduction typically 25% to 50%, more for other wastes
- Off-gases captured and treated
- Majority of organics destroyed by melt with balance removed by off-gas treatment system (OGTS)
- Heavy metals and radionuclides retained in melt and immobilized in glass product or removed in OGTS
- Batch processes with rates to 100 MT / day

Two Primary GeoMelt® Treatment Configurations

In-Container Vitrification™ (ICV)

Subsurface Planar Vitrification[™] (SPV)

In-container treatment

In-situ treatment

GeoMelt® Capabilities

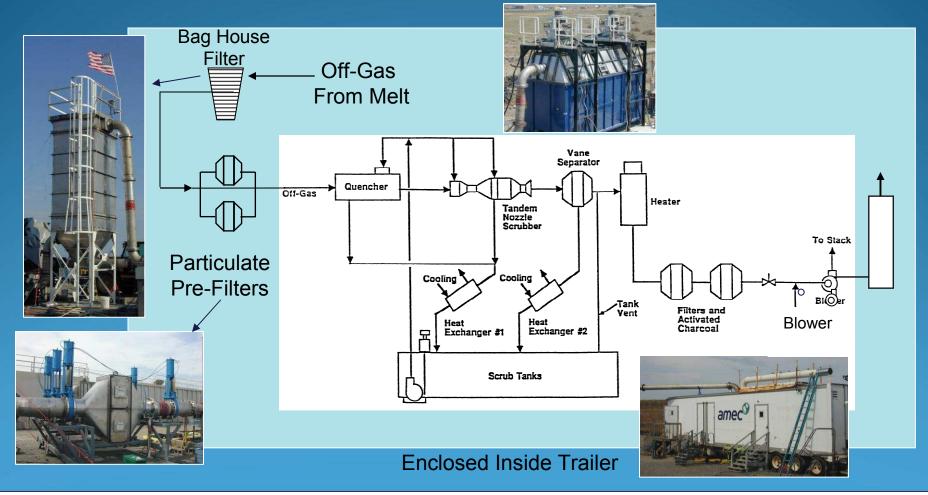
- Applicable to most all contaminant types and mixtures
 - heavy metals inorganic compounds
 - radionuclides organics
- Successfully treated organic waste loadings >30 wt%
- Treated wide range of soil types (sands, silts, clays, gravels)
- Applicable to wet soils, sludges, sediments, ash (up to 70% water)
- Treat liquid wastes by first mixing with soil
- High tolerance for debris (steel, wood, concrete, tires, etc)
- Effective on asbestos wastes (asbestos provides glass formers)
- Permitted for PCBs by the U.S. EPA
- Selected in Australia as an alternative to incineration

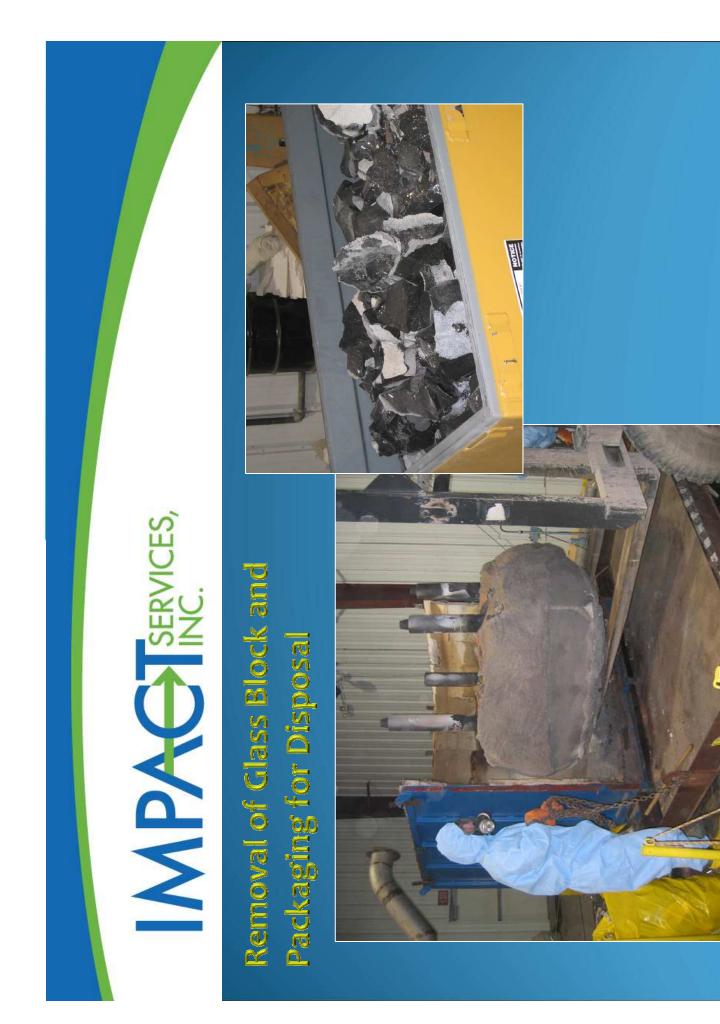
Partial List of Materials Treated with GeoMelt®

Metals	Organics	Debris	Radionuclides
Pb	PCBs	Wood	Pu
Cd	Dioxins / Furans	Tires	U
Cr	TCE / PCE	Asphalt	Cs
Ni	Carbon Tetrachloride	Plastic	Sr
Ba	Benzene / Toluene	Concrete	Со
Zn	Acetone	Steel Plates	Ru
Hg	Formaldehyde	Drums	Am
Cu	Methylene Chloride	Rocks	Ra
Al	Ethylene Glycol	Bricks / Clay Pipe	Rd
Fe	Methyl Ethyl Ketone	Glass Bottles	Тс
Nd	Pentachlorophenol	Ash	
Rb	НСВ	Asbestos	
Be	DDT, DDD, DDE	Tanks	
As	Lindane	Filters	

Examples of Waste Loadings Demonstrated

Material Plutonium **PCBs** Dioxin Pentachlorophenol **Pesticides** Hexachlorobenzene Lindane Concrete Asphalt **Iron/Steel** Drums **Asbestos** Water


Configuration Soil / Debris Soil / Debris Soil / Debris Soil / Debris Soil Soil / Debris Soil Soil / Debris Soil / Debris Soil / Debris 55-gal Fiber Mat Sludge


Loading 80 to 175 GBq / melt 17,863 mg/kg 38 mg/kg 6,950 mg/kg >4 wt% 33 wt% 33 wt% 8 wt% at FS 75 wt% at ES 11 wt% 37 wt% 20 / melt setting 72 wt% 70%

Minimal Energy Usage

- Common misconception that GeoMelt[®] requires lots of power
- Energy requirement for GeoMelt[®] is about half of what other thermal processes require due to greater efficiency and less heat loss
 - Joule heating (resistive heating) within the body of the melt
 Heat "losses" occur at the melt boundaries and serve to preheat adjacent waste materials
 - In ICV configuration, sides and bottom are insulated so most heat loss occurs at the top surface where waste material feed pile resides
- Energy for melting ranges from 0.6 to 1.5 kWh / kg of material melted
- Energy requirements for off-gas treatment and other services will be about equal for all treatment technologies

ICV[™] Off-Gas Treatment

GeoMelt® Test Site

ICV Pre-Treatment and Melt Process Equipment in Japan

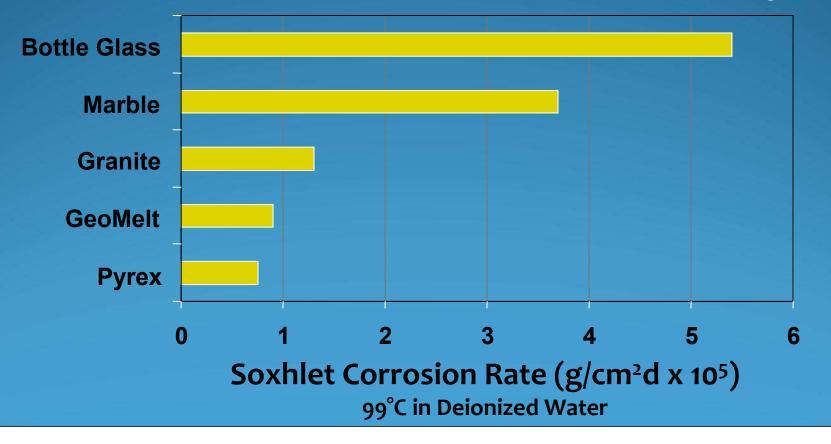
Crusher for Concrete & Debris

Rail Mounted Box at Melt Station

Pre-treatment Mixer

Off-Gas Treatment Equipment

Melt Container at Fill Station



Liquid Effluent Treatment

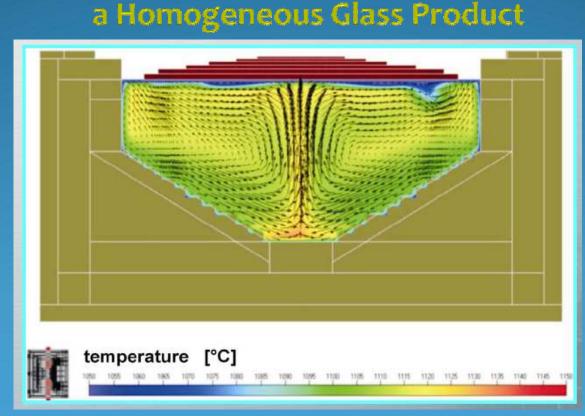
GeoMelt[®]Product Durability

Comparative Corrosion Rates

(Normally 10X to 100X more durable and leach resistant than HLW glasses)

GeoMelt Glass Characteristics

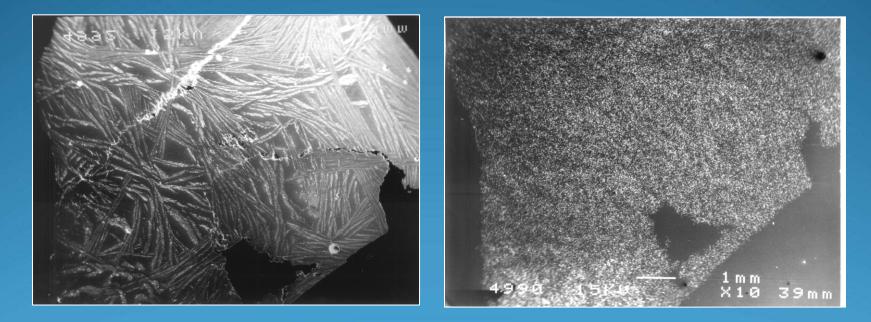
Compared to Cement-Based Waste Forms


Characteristic	Glass	Cement
Leach Resistance (ANSI 16.1)	LI of 14-18	LI of 6-8
Durability (years)	>10 ⁴ – 10 ⁶	10 ²
Waste Loading	Generally higher	Limited
Compressive Strength (psi)	40,000 - 60,000	3,000 - 8,000
Tensile Strength (psi)	4,000 - 4,400	400 - 600
Volume Reduction	Decrease	Increase

Melt Surface

Melt surface during the treatment of plutonium-contaminated waste

Joule Heating Results in Temperature Gradients Resulting in Convective Flows in the Melt Pool that Creates


Numerical Model Output of Tempest Model Showing Flow Velocities

Staging Waste and Debris for 4 MT Demo Melt with Point Sources of 1 kg of U₃O₈ and ~0.5 g 239-Pu

- Soil
- Steel plate
- Lead sheet
- Barytes bricks
- Electrical Cable
- Bitumen
- Plastic
- PPE
- Pu and U located in center of treatment zone as point source

Thin Section of Vitrified Product (L) and Corresponding Image Showing Uniformity of Alpha Disintegrations (R)

Point Sources of Pu and U were incorporated as oxides uniformly in the vitrified product proving good convective mixing to form a homogeneous glass

Benefits of GeoMelt

- Robust accommodates highly variable materials
- Flexible process and waste package are project specific
- Minimal pre-treatment size reduction and sorting
- Soil based an inexpensive source of glass formers
- Shielding ICV package design provides inherent shielding
- In situ treatment if there is a high risk and cost of exhumation
- Volume reduction typically 25 50% for soil, more for other wastes
- Excellent waste form highly durable
- Demonstrated capability proven in other applications
- Cost vs permanence excellent value

Key Differentiators for Using GeoMelt as the UK's Thermal Treatment Process

- GeoMelt has been *deployed successfully* at commercial waste treatment facilities and site remediation projects to treat *radioactive* and *hazardous wastes* around the world.
- GeoMelt is capable of simultaneously processing organic, inorganic, and radioactive contaminants.
- GeoMelt has a high tolerance for debris such as concrete, scrap metal, plastic, and wood.
- GeoMelt demonstrates unequaled residual product properties such as *leach resistance*, strength, and weathering resistance.
- GeoMelt has obtained a high degree of public and regulatory acceptance.
- GeoMelt will result in a final waste form that provides a disposition path for problematic waste streams.

Schedule of Events for GeoMelt[®] in the UK

- GeoMelt Demonstration Unit scheduled for delivery and installation at AMEC's Birchwood Facility by March, 2010
- Followed by commissioning and training of UK staff
- AMEC's facility available for trial work to prove GeoMelt in the UK
- Ability to undertake active trials
- Associated waste management consultancy

